Question	Scheme	Marks	AOs		
1(a)	5'(x) = 2x + 4x - 4	M1	1.1b		
	$f'(x) = 2x + \frac{4x - 4}{2x^2 - 4x + 5}$	A1	1.1b		
	$2x + \frac{4x - 4}{2x^2 - 4x + 5} = 0 \Longrightarrow 2x(2x^2 - 4x + 5) + 4x - 4 = 0$	dM1	1.1b		
	$2x^3 - 4x^2 + 7x - 2 = 0*$	A1*	2.1		
		(4)			
(b)	(i) $x_2 = \frac{1}{7} \left(2 + 4 \left(0.3 \right)^2 - 2 \left(0.3 \right)^3 \right)$	M1	1.1b		
	$x_2 = 0.3294$	A1	1.1b		
	(ii) $x_4 = 0.3398$	A1	1.1b		
		(3)			
(c)	$h(x) = 2x^3 - 4x^2 + 7x - 2$		3.1a		
	h(0.3415) = 0.00366 $h(0.3405) = -0.00130$	M1			
	States:				
	• there is a change of sign	A1	2.4		
	• $f'(x)$ is continuous	AI			
	• $\alpha = 0.341$ to 3dp				
		(2)			
	(9 mark				
Notes					

(a)

M1: Differentiates $\ln(2x^2 - 4x + 5)$ to obtain $\frac{g(x)}{2x^2 - 4x + 5}$ where g(x) could be 1

A1: For
$$f'(x) = 2x + \frac{4x-4}{2x^2-4x+5}$$

dM1: Sets their $f'(x) = ax + \frac{g(x)}{2x^2 - 4x + 5} = 0$ and uses "**correct**" algebra, condoning slips, to obtain a

cubic equation. E.g Look for $ax(2x^2-4x+5)\pm g(x) = 0$ o.e., condoning slips, followed by some attempt to simplify

A1*: Achieves $2x^3 - 4x^2 + 7x - 2 = 0$ with no errors. (The dM1 mark must have been awarded) (b)(i)

M1: Attempts to use the iterative formula with $x_1 = 0.3$. If no method is shown award for $x_2 = awrt 0.33$

A1: $x_2 =$ awrt 0.3294 Note that $\frac{1153}{3500}$ is correct

Condone an incorrect suffix if it is clear that a correct value has been found (b)(ii)

A1: $x_4 = awrt 0.3398$ Condone an incorrect suffix if it is clear that a correct value has been found (c)

M1: Attempts to substitute x = 0.3415 and x = 0.3405 into a suitable function and gets one value correct (rounded or truncated to 1 sf). It is allowable to use a tighter interval that contains the root 0.340762654

Examples of suitable functions are $2x^3 - 4x^2 + 7x - 2$, $x - \frac{1}{7}(4x^2 - 2x^3 + 2)$ and f'(x) as this has been

found in part (a) with f '(0.3405)= - 0.00067..., f '(0.3415)= (+) 0.0018 There must be sufficient evidence for the function, which would be for example, a statement such as $h(x)=2x^3-4x^2+7x-2$ or sight of embedded values that imply the function, not just a value or values

even if both are correct. Condone h(x) being mislabelled as f

 $h(0.3415) = 2 \times 0.3415^3 - 4 \times 0.3415^2 + 7 \times 0.3415 - 2$

A1: Requires

- both calculations correct (rounded or truncated to 1sf)
- a statement that there is a change in sign and that the function is continuous
- a minimal conclusion e.g. \checkmark , proven, $\alpha = 0.341$, root

Question	Scheme	Marks	AOs
2 (a)	25	B1	3.4
		(1)	
(b)	Attempts to differentiate using the product rule $\frac{dv}{dt} = \ln(t+1) \times -0.4 + \frac{(10-0.4t)}{t+1}$	M1 A1	3.1b 1.1b
	Sets their $\frac{dv}{dt} = 0 \Rightarrow \frac{(10 - 0.4t)}{(t+1)} = 0.4 \ln(t+1)$ and then makes progress towards making "t " the subject (See notes for this)	dM1	1.1b
	$t = \frac{25 - \ln(t+1)}{1 + \ln(t+1)}$ $t = \frac{26}{1 + \ln(t+1)} - 1 *$	A1*	2.1
		(4)	
(c)	(i) Attempts $t_2 = \frac{26}{1 + \ln 8} - 1$	M1	1.1b
	awrt 7.298	A1	1.1b
	(ii) awrt 7.33 seconds	A1	3.2a
		(3)	
			(8 marks

(a)

- B1: 25 but condone 25 seconds. If another value is given (apart from 0) it is B0
- (b)
- M1: Attempts to use the product rule in an attempt to differentiate $v = (10 0.4t) \ln(t + 1)$ Look for $(10 - 0.4t) \times \frac{1}{(t+1)} \pm k \ln(t+1)$, where *k* is a constant, condoning slips.

If you see direct evidence of an incorrect rule used e.g. vu'-uv' it is M0 You will see attempts from $v = 10 \ln(t+1) - 0.4t \ln(t+1)$ which can be similarly marked.

In this case look for $\frac{a}{t+1} \pm \frac{bt}{t+1} \pm c \ln(t+1)$

A1: Correct differentiation. Condone a missing left hand or it seen as v', $\frac{dy}{dx}$ or even = 0

$$\left(\frac{dv}{dt}\right) = \ln(t+1) \times -0.4 + \frac{(10-0.4t)}{t+1} \text{ or equivalent such as } \left(\frac{dv}{dt}\right) = \frac{10}{t+1} - \frac{0.4t}{(t+1)} - 0.4\ln(t+1)$$

dM1: Score for setting their dV/dt = 0 (which must be in an appropriate form) and proceeding to an equation where the variable *t* occurs only once – ignoring $\ln(t + 1)$.

See two examples of how this can be achieved below. It is dependent upon the previous M. Look for the following steps

- An allowable derivative set (or implied) = 0 E.g. $\ln(t+1) \times 0.4 = \frac{(10-0.4t)}{t+1}$
- Cross multiplication (or division) and rearrangement to form an equation where the variable *t* only occurs once.

E.g.1.

$$\ln(t+1) \times 0.4 = \frac{(10-0.4t)}{t+1}$$

$$\Rightarrow \ln(t+1) = \frac{25-t}{t+1}$$

$$\Rightarrow \ln(t+1) = -1 + \frac{26}{t+1}$$

E.g 2

$$\ln(t+1) \times 0.4 = \frac{(10-0.4t)}{t+1}$$
$$\Rightarrow 0.4t \ln(t+1) + 0.4 \ln(t+1) = 10 - 0.4t$$
$$\Rightarrow 0.4t \left(1 + \ln(t+1)\right) = 10 - 0.4 \ln(t+1)$$

A1*: Correctly proceeds to the given answer of $t = \frac{26}{1 + \ln(t+1)} - 1$ showing all key steps.

The key steps must include

- use of $\frac{dv}{dt}$ or v'which must be correct
- a correct line preceding the given answer, usually $t = \frac{25 \ln(t+1)}{1 + \ln(t+1)}$ or $\frac{26}{t+1} 1 = \ln(t+1)$

(c) (i)

M1: Attempts to use the iteration formula at least once.

Usually to find $t_2 = \frac{26}{1 + \ln 8} - 1$ which may be implied by awrt 7.44

A1: awrt 7.298. This alone will score both marks as iteration is implied. ISW after sight of this value. As t_3 is the only value that rounds to 7.298 just score the rhs, it does not need to be labelled t_3

(c)(ii)

A1: Uses repeated iteration until value established as awrt 7.33 **seconds**. Allow awrt 7.33 **s** Requires units. It also requires some evidence of iteration which will be usually be awarded from the award of the M

Question	Scheme	Marks	AOs
3(a)	$\dots xe^x + \dots e^x$	M1	1.1b
	$k\left(xe^{x}+e^{x}\right)$	A1	1.1b
	$\frac{d}{dx}\left(\sqrt{e^{3x}-2}\right) = \frac{1}{2} \times 3e^{3x} \left(e^{3x}-2\right)^{-\frac{1}{2}}$	B1	1.1b
	$(f'(x) =) \frac{(e^{3x} - 2)^{\frac{1}{2}} ("7"xe^{x} + "7"e^{x}) - "\frac{3}{2}"e^{3x} (e^{3x} - 2)^{-\frac{1}{2}} \times "7"xe^{x}}{e^{3x} - 2}$	dM1	2.1
·	$f'(x) = \frac{7e^{x} (e^{3x}(2-x)-4x-4)}{2(e^{3x}-2)^{\frac{3}{2}}}$	A1	1.1b
		(5)	
(b)	$e^{3x}(2-x)-4x-4=0 \Rightarrow x(e^{3x}\pm)=e^{3x}\pm$	M1	1.1b
	$\Rightarrow x = \frac{2e^{3x} - 4}{e^{3x} + 4} *$	A1*	2.1
·		(2)	
(c)	Draws a vertical line $x=1$ up to the curve then across to the line $y=x$ then up to the curve finishing at the root (need to see a minimum of 2 vertical and horizontal lines tending to the root)	B1	2.1
		(1)	
(d)(i)	$x_2 = \frac{2e^3 - 4}{e^3 + 4} = 1.5017756$	M1	1.1b
	$x_2 = $ awrt 1.502	Al	1.1b
(ii)	$\beta = 1.968$	dB1	2.2b
		(3)	
(e)	$h(x) = \frac{2e^{3x} - 4}{e^{3x} + 4} - x$ $h(0.4315) = -0.000297 h(0.4325) = 0.000947$	M1	3.1a
	 Both calculations correct and e.g. states: There is a change of sign e.g f'(x) is continuous α = 0.432 (to 3dp) 	A1cao	2.4
		(2)	•
	Notes	(13	marks)
If it i	mpts the product rule on xe^x (or may be $7xe^x$) achieving an expression of the is clear that the quotient rule has been applied instead which may be quoted the $e^x + e^x$) (e.g. $7(xe^x + e^x)$) or equivalent which may be unsimplified (may be	nen M0.	
work B1: $\left(\frac{d}{dx}\right)$	($\sqrt{e^{3x}-2}$) = $\frac{1}{2} \times 3e^{3x} (e^{3x}-2)^{-\frac{1}{2}}$ (simplified or unsimplified)		



